前,倒是显得挺剩余的;
欧拉定理和费马小定理?高斯的二次互反律?或者无穷递降法?这些更是相去甚远......
“没道理啊!”快半个小时过去了,张伟还是束手无策,“第一题就这么难,这是存心不让人活了?”
百思不得其解的张伟,稍稍瞄了一下教室里其他的考生:一个个抓耳挠腮的,卷面同样是空空如也。
“看来辣鸡的不止我一个啊......”看到其他人和自己同样“辣鸡”,张伟心里就好受多了,“要不这题先放放?”
看看时间,还有四分钟就半个小时,张伟决定再试这最后四分钟。
前面顺着走怎么都走不通,张伟这次决定要反着走试试,大胆假设,小心求证:先大胆的假设,an的集就是有斐波那契数列的前100项!
张伟先把an的前十罗列出来:1、1、2、3、5、8、13、21、34、55.
再按照假设的an值来移动数字串:a1=1,不用移动;a2=1,第2列要往下移动1格;a3=2,第3列要往下移动2格;a4=3,第4列要往下移动3格......
刚移动了三下,好像就有规律了!将每一列都往下移动n-1格?
张伟按照这种规律,继续往下移动尝试着:
第5列往下移动5-1=4格,得到a5=5,符合!
第6列往下移动6-1=5格,得到a6=8,符合!
第7列往下移动7-1=6格,得到a7=13,还是符合!
第8列、第9列、第10列......
张伟一直移动到20列,全都符合!
答案出来了:按照“每一列数字串都往下移动n-1格”的规律移动数字串,移动后形成的模型,其前100横数字之和形成的数列an中的项,全部是斐波那契数!
第二小问,搞定!
第二问找到正确的规律,第三问在第二问的基础上,基本就属于送分题了:
f(1)=C(0,0)=1。
f(2)=C(1,0)=1。
f(3)=C(2,0)+C(1,1)=1+1=2。
f(4)=C(3,0)+C(2,1)=1+2=3。
f(5)=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。
f(6)=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。
F(7)=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。
……
F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m)(m<=n-1-m)
第三问也搞定,打完收功,第一题21分——到手!
看看时间,8:46,才用了不到一个小时!再看看隔壁左右的考生,还是都对着空空如也的卷子抓耳挠腮在!
前方人员在抓耳挠腮;
左方人员在抓耳挠腮;
右方人员在抓耳挠腮;
后方人员在抓耳......不对啊!
张伟猛地一回头,又看到了昨天那位大叔!
刘干事和张伟大眼瞪着小眼。
“考试的时候不准东张西望!”刘干事把脸一板,假装从张伟身边路过......
又见路过——不管张伟信不信,反正刘干事自己是信了......